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Abstract—A co-designed processor helps in cutting down both
the complexity and power consumption by co-designing certain
key performance enablers. In this paper, we propose a FIFO
based co-designed out-of-order processor. Multiple FIFOs are
added in order to dynamically schedule, in a complexity-effective
manner, the µ-ops.

We propose a commit logic that is able to commit the program
state as a superblock commits atomically. This enables us to get
rid of the Reorder Buffer (ROB) entirely. Instead to maintain the
correct program state, we propose a four/eight entry Superblock
Ordering Buffer (SOB). We also propose the per superblock
Register Rename Table (SRRT) that holds the register state
pertaining to the superblock. Our proposed processor dissipates
6% less power and obtains 12% speedup for SPECFP; as a result,
it consumes less energy.

Furthermore, we propose an enhanced steering heuristic and
an early release mechanism to increase the performance of
a FIFO based out-of-order processor. We obtain performance
improvement of nearly 25% and 70% for a four FIFO and for
a two FIFO configurations, respectively. We also show that our
proposed steering heuristic based processor consumes 10% less
energy than the previously proposed steering heuristic.

I. INTRODUCTION

A Co-designed Processor translates instructions from the
Source ISA to the host ISA, using virtual machine technology.
It further optimizes the RISC like µ-ops using its run-time
software. Microarchitectural support is added to both eliminate
virtual machine related overhead, and to support various
optimizations. This kind of virtual machine is referred to in
literature as a Co-designed Virtual Machine [1].

The goals of a co-designed processor include performance,
power-efficiency, and design simplicity by co-designing the
processor in hardware and software. These goals can be
achieved by introducing new microarchitectural features, or
changing the underlying microarchitecture entirely or co-
designing key performance enablers.

A. Co-designing the Commit Logic

Our proposed co-designed processor uses the Virtual Ma-
chine Monitor (VMM) to form superblocks [2]. We use
superblocks that have a single-entry and a single-exit point, by
converting the branches (except the last branch) into asserts,
similar to rePlay [3]. Such a superblock, however, needs to be
committed atomically.

Since the µ-ops execute out-of-order, a re-ordering logic
is required at the back end in order to maintain the correct
program order. One could use a conventional ROB in order

to achieve this. However, the atomic commit constraint of
the superblock implies that if all the µ-ops of the superblock
have not executed then the µ-ops need to wait in the ROB to
commit. This puts pressure on the ROB and related structures
and leads to stalls.

In order to mitigate these problems we propose a ROB-
less re-ordering logic. Two structures, namely a Superblock
Ordering Buffer (SOB) and Superblock Register Rename
Tables (SRRTs) are proposed that together maintain the correct
program state. Each superblock is allocated a SRRT and an
entry in a Superblock Ordering Buffer (SOB). The entry at the
head of SOB is considered for commit at every cycle. A SOB
entry contains various fields; that not only indicate whether a
superblock is ready to commit, but also locates the program
state associated with the superblock.

B. Simplifying the Issue Logic

Generally, a CAM based issue logic enables out-of-order
execution of µ-ops, using a wake-up and select logic. This
mechanism helps in exploiting the ILP, but it comes at the
cost of higher complexity [4] and power dissipation [5].
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Fig. 1: Performance of Dependence-based Steering Heuristic

A FIFO based issue logic, on the other hand, helps in
reducing both the complexity and the power. Palacharla et
al. [4] proposed a dependence-based steering heuristic that
steers each µ-op to a chosen FIFO at the dispatch stage. As
the number of FIFOs are decreased the performance of the
dependence-based heuristic declines sharply, for both integer
and floating-point benchmarks, as shown in Figure 1. A similar
observation was also made by Canal et. al. [6]. In fact a policy
as simple as round-robin or random performs better with fewer
number of FIFOs compared to dependence-based heuristic.

We propose a co-designed out-of-order processor that uses
multiple, but fewer FIFOs, in order to achieve high perfor-



mance. Since the VMM forms the superblocks it performs
various optimizations similar to that in [7], [8], [9]. Our steer-
ing heuristic is based upon the dependence-based heuristic,
and we make simpler modifications by analyzing the stalls at
the dispatch stage. This modified steering heuristic reduces
the stalls at dispatch, drastically, leading to a significant
performance benefit.

C. The Early Release

Modern out-of-order processor hold issue queue entries for
a small number of cycles, in order to recover from load-hit
miss-speculation. By releasing some of the issue queue entries
earlier, we gain in achieving a higher dispatch throughput and
in reducing the pressure on issue queue. For FIFO based issue
queues, this mechanism is even more important as it releases
the performance critical entries, from the head of a FIFO.

The key contributions of this paper are as follows :
• Superblock Ordering Buffer (SOB) is proposed, that

commits the program state in the original program order.
As a result of the SOB and related structures, the need
of conventional Reorder Buffer (ROB) is eliminated.

• Per Superblock Register Rename Table (SRRT) is pro-
posed, that holds the register of the corresponding su-
perblock and is committed atomically.

• Enhanced dependence-based steering logic is proposed,
that reduces various stalls at dispatch stage due to the
unavailability of empty FIFOs. This provides significant
performance benefit, by increasing the decoder through-
put.

• Early release logic is proposed, that releases few issue
queue entries at issue time. This reduces the pressure on
FIFO based issue queues and provides major improve-
ment in performance in a FIFO constrained scenario.

The rest of the paper is structured as follows. First, the co-
designed commit logic is proposed in Section II. In Section
III the steering logic and the early release logic are discussed
in greater detail. The performance and the power results are
discussed in Section IV. The related work is discussed in
Section V and the conclusions are drawn in Section VI.

II. CO-DESIGNING THE COMMIT LOGIC

As a consequence of out-of-order execution, reorder logic
is required at the back-end in order to maintain a correct
program state. We propose a ROB-less reorder logic in order to
maintain the correct program state. A special commit operation
updates the program state, both the register and the memory
state, at once.

Front-end state is maintained by the Front-end Register Re-
name Table (FRRT), while the Back-end (committed) state is
maintained by the Back-end Register Rename Table (BRRT),
similar to the Netburst microarchitecture [10]. However, since
the superblocks are atomic, the BRRT is updated only when
all the µ-ops of the superblock have successfully written to
the Physical Register File. Similarly, the memory state is
committed to the D-cache when all the µ-ops of the superblock
have completely executed.
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Fig. 2: Register State Rename and Commit. rax and rcx are
the live-outs of the current superblocks. Hence, rbx and rdx
entries in the SRRT are invalid. As a result at commit only
rax and rcx are updated in the BRRT.

A. Register State

In order to commit the register state atomically, we propose
the per superblock register rename table (SRRT). The SRRT,
like FRRT or BRRT, holds mappings from architected register
to physical registers. However, unlike FRRT or BRRT, it holds
mappings of only those architected registers that are live-outs
of the superblock1, as illustrated by the example in Figure 2.

A SRRT is assigned to a superblock when the head µ-op
is being renamed. The source operands mappings are read
from the FRRT and the destination operand is updated in the
FRRT, in a conventional manner. However, if the µ-op being
renamed is a live-out, then the SRRT, corresponding to the
superblock, is updated. When all the µ-ops, of the superblock,
have executed the register state is committed, by copying only
the valid mappings from the SRRT to the BRRT; and the SRRT
is made available.

SRRT like FRRT can be designed either using a RAM
or a CAM based structure. We, however, use a RAM based
structure as it is more scalable [4]. In a typical Register
Rename Table a RAM cell consists of a shift register cell
in order to shadow the mapping. However, the SRRT unlike
FRRT does not need any shift register cell.

Moreover, unlike conventional rename tables, the SRRT is
not read at the rename stage. Its only written at the rename
stage by the µ-ops that are live-outs of the superblock. The
read ports are accessed only at the commit stage when the
valid mappings from the SRRT are copied to the BRRT.

Total number of ports in a conventional FRRT for a four-
way superscalar processor is twelve2. Whereas, six read and
two write ports are sufficient for a SRRT. Hence if a su-
perblock has more live-outs than six, the commit is split into
multiple cycles. This has no consequence on the performance

1Live-outs of the superblocks are marked by the VMM.
2Eight read ports and four write ports assuming two operand µ-ops.



as commit is not in the critical path. Similarly, no more
than two live-outs could be renamed in a given cycle. Our
experiments have shown that the average number of live-outs
per superblocks are nearly 8 and 4 for SPECFP and SPECINT,
respectively.

The delay of a Rename Table is given by Tdecode +
Twordline +Tbitline +Tsenseamp [4]. The Tdecode, and Tbitline

depend upon the total number of ports and the number of
entries. As shown above we reduce the number of ports to
eight, while the number of entries are still the same3. This is
in turn reduces these delays and the corresponding power.

Furthermore, the Twordline depends on the number of shift-
register cells, the number of ports and the width of each entry.
SRRTs do not need any shift register cells, has fewer ports,
and the width is same4; and hence has a smaller delay. As a
result, the overall delay of SRRT is lower than that of FRRT,
and it does not fall into the critical path. However, as there
are four/eight SRRTs, additional power is dissipated, which is
quantified in Section IV-E.

B. Memory State

We use gated store buffers [11] in order to hold the data,
corresponding to a store µ-op. A buffer entry is allocated
to the store at the rename stage. When all the µ-ops of
the superblock have successfully executed a special commit
operation commits the store buffer data to the cache hierarchy.

C. Superblock Ordering Buffer

We propose Superblock Ordering Buffer (SOB) in order to
commit the superblock register and memory state in program
order. Since SOB is a circular buffer, a superblock is com-
mitted only when the entry corresponding to it in the SOB is
at the head of SOB. For a four-way out-of-order processor a
SOB could have four or eight entries, many-fold smaller than
a conventional ROB for a four-way superscalar processor.
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Fig. 3: Superblock Ordering Buffer (SOB)

Each SOB entry consists of six fields as shown in Figure
3. The first field (mio cnt) indicates the number of µ-ops in a
superblock. The second field (exe cnt) indicates the number of
µ-ops that have successfully executed. The third field (p srrt)

3Number of Architected Registers.
4Size depends upon number of Physical Registers.

is a pointer to the per superblock register rename table (SRRT).
The fourth field (tail rnm) is a bit indicating whether the tail
µ-op of the superblock has been renamed. The fifth (st bgn)
and the sixth (st end) fields indicate the beginning and the end
index of the gated store buffer, respectively.

As the head µ-op is renamed, a SOB entry and a SRRT is
allocated to the superblock. The p srrt field of the SOB entry
is made to point to the SRRT. As other µ-ops are renamed
mio cnt is incremented, and the tail rnm is set when the tail
is renamed. The st bgn is updated when the first store is at
rename, while st end is updated when the last store is updated.

As a µ-op reaches the commit stage, the exe cnt field of the
SOB entry is incremented. The head of SOB is considered for
commit when the exe cnt equals the mio cnt, and the tail rnm
(bit) field is set5. The register state held by SRRT is updated to
BRRT; and the gated store buffer commits the memory state.

We have modeled SOB using a RAM array, and observed
that the delay and power dissipated is lower than the ROB.
Since the SOB consists of only eight or four entries, the total
access delay and power dissipated is lower.

D. Physical Register Recycling

Physical registers are held in the conventional physical
register file. The VMM marks the non live-out architected
registers and finds the number of consumers for each one of
them. This information is used to update the counter associated
with the corresponding Physical Register. As the consumer µ-
ops execute the counter, associated with the source physical
registers, is decremented. The Physical Registers that have
their counters equal to zero are freed by the conventional
Register Recycling mechanism [12].

On the other hand, the live-out architected registers of a
superblock are handled similar to the conventional out-of-
order processor. Even after the superblock is committed the
counters associated with these physical register are not equal
to zero. This is because they hold the program register state
and at least the BRRT holds reference to them. Only when
another superblock with same live-out architected register is
committed the physical register is freed.

III. OUT-OF-ORDER LOGIC

A FIFO based issue logic is used in order to implement
out-of-order execution, in a complexity-effective manner. Such
an issue logic was proposed earlier by Palacharla et al. [4].
Multiple FIFOs are used to issue µ-ops in parallel and out-
of-order, while µ-ops from a FIFO are always issued in the
program order.

A. Dependence-based Steering Heuristic

Since our proposed steering logic depends partially on
the one proposed by Palacharla et al [4], we first describe
Palacharla’s approach and later point out its drawbacks.

Let I be the instruction that is ready to be dispatched.
Depending upon the availability of I’s operands, the steering
decisions made are:

5This implies the µ-ops have renamed and hence executed.



• If all the operands of I are ready, then steer I to an empty
FIFO.

• If only one source operand of I is available, then steer I
to a FIFO whose tail produces the required operand. If
no such FIFO found steer I to an empty FIFO.

• If both the source operands of I is unavailable, then steer
I to a FIFO whose tail is the operand producer of either
of the operands, giving priority to left source operand.

If the desired FIFO is full or an empty FIFO is not available
then dispatch is stalled. The steering logic required in the
dispatch stage consists of a SRC FIFO table. This table is
indexed by physical register, and contains the identity of
the FIFO buffer that contains the µ-op that produces the
architected register value.

Figure 1 shows the performance of the above mentioned
dependence-based dispatch policy when implemented in our
co-designed processor.

B. Enhanced Steering Heuristic

As observed above, a major drawback of the dependence-
based scheme is a high frequency of stalls incurred at the
dispatch stage, as the number of FIFOs are halved. The three
conditions that causes the dispatch to stall for the dependence-
based scheme are:

• Rdy no: Empty FIFO is unavailable for a µ-op whose
source operands are ready at dispatch.

• Tail no: Empty FIFO is unavailable for a µ-op, neither
of whose source operands are ready nor are any of the
producers a tail of a FIFO.

• Tail FIFO: FIFO is available, but is full, for a µ-op whose
producer is the tail of the FIFO.
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Figure 4 provides distribution of the these three stalling
conditions. Nearly 80% of stalls are due to Rdy no, while
Tail FIFO hardly causes any stall. We exploit this observation
by modifying the steering logic.

Our modified steering logic builds upon the dependence-
based steering logic. It, however, reduces the stalls due to
Rdy no by steering a µ-op, whose operands are ready, to a
FIFO whose tail is ready. The FIFO whose tail is ready implies
that all µ-ops ahead of it in the FIFO must be ready, as the
µ-ops are steered based on their dependencies.

Figure 5 shows the enhanced steering logic that requires an
additional tail-check logic. Shaded blocks are those that have
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been added. The Tail-check logic basically uses the Register
ready table, which is also checked by the head of FIFO at the
issue stage, as illustrated in Figure 6.

The Physical Register Ready table has same rows as the
SRC FIFO table. However, the size of a column is smaller
than SRC FIFO as it contains just a single bit. This implies the
access delay to this table is smaller than that for the SRC FIFO
table. Furthermore, since the check is made in parallel to other
checks, as shown in Figure 5, the tail-check logic does not add
to the critical path. However, it does dissipate extra power and
is evaluated in Section IV.

As a consequence of the proposed enhancements to the
steering logic, the likelihood of multiple ready µ-ops in a FIFO
increases. This can be further exploited by increasing the issue
width per FIFO. The µ-op immediately after the head will only
be issue if the head is ready to issue.

We further try to decrease the stalls at dispatch by reducing
stalls due to Tail no. We reuse the Tail-check logic by steering
a µ-op, that encounters Tail no, to a FIFO whose tail is ready.
We use the same intuition, as stated above, that a FIFO whose
tail is empty is as good as an empty FIFO.



C. Early Release

Modern out-of-order processors, for example Alpha 21264
[13], speculate on the loads to hit in the L1-Cache. In order
to guarantee back-to-back execution, dependent µ-ops of a
load are issued speculatively. Issue Queue entries of all the
issued µ-ops are held for a couple of cycles. In case of a
miss-speculation, the µ-ops from the execution pipeline are
squashed and issue queue entry is re-validated.
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Fig. 7: Illustration of early release

This holding of issue-queue entries for a few number of
cycles adds pressure on the issue queue. For FIFO based
issue queues this has an even more dramatic impact on the
performance, especially for the dependence-based steering
heuristic.

We propose an early release mechanism, that releases issue
queue entries, at the issue stage, for all the µ-ops issued in
that cycle; given its safe to do so. The proposed early release
mechanism is not just applicable to FIFO based issue logic,
but can be applied to CAM based Issue logic, as it is.

Our proposal introduces two6 bit-vectors that keep track of
whether a load was issued in a given cycle for a small history.
The length of these bitvectors is determined by the latency of
the load µ-op, which is five in our case. At any given cycle, if
a load issues the least significant bit is set. Both the bit-vectors
are left-shifted, at every cycle, by one.

Figure 7 provides an illustration of the early release scheme.
To determine whether a load was issued X cycles back, the
bit at position X + 17 is checked. Since the bit-vectors are
five bits wide, the set bit at most significant or the second
most significant position implies a load was issued four or
three cycles back, respectively. This information is sufficient
to determine whether the issue queue entries, of the µ-ops
issuing in the current cycle, could be released.

IV. EVALUATION

A. Experiment Methodology

Our proposed HW/SW co-designed processor is modeled
using PTLSim [14]. We have implemented a FIFO based out-

6Since there are two Load Units.
7With the least significant bit position being zero.

of-order processor core along with a Cd-VM. Table I provides
detailed information of the microarchitecture of the simulated
processor.

4-way out-of-order Processor Parameters
I-Cache 16 KB, 4-way, 64 B line, 2 cycle access
Branch Predictor Combined Predictor 64 K

16-bit history 2-level,
64 K bi-modal, 1K RAS

Fetch Width 4 micro-ops / x86 instructions
up-to 16 bytes long

Issue Width 4 (2 LD, 2 FP, 2 INT, 2 ST)
L1 Data Cache 32 KB, 4-way, 64 B line, 2 cycles
L2 Cache 256 KB, 16-way, 64 B line, 6 cycles
L3 Cache 4 MB, 32-way, 64 B line, 14 cycles
Main Memory 154 cycles
Rename 8 source, 4 destination operands
FIFO-based Issue Queue 8 entry, (2/4/8) FIFOs
CAM-based Issue Queue 16 entry, 1 LD, 2 ALU, 1 FP
Functional Units 2 LDU, 2 ALU, 2 AGU, 2 FPU
Register File 128-entry INT RF, 128-entry FP RF,

4 write ports each
Gated Store Buffer 32 entry
Load Fill Request Queue 8 entry
Miss Buffer 8 entry

TABLE I: Baseline processor configuration

We have evaluated our proposed scheme using the
SPEC2000 benchmark suite. These benchmarks have been
compiled with gcc version 4.1.3 using -O3. Using the de-
veloped infrastructure, we have simulated the benchmarks for
100 million x86 instructions after the initialization and a cache
warm-up period of 2 million x86 instructions.

B. Enhanced Steering Heuristic performance
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Figure 8 shows the performance of our enhanced steering
heuristic. The two bars show the normalized speedup of
our heuristic with respect to the dependence-based steering
heuristic. As evident from the figure we obtain speedup of
nearly 70% and nearly 25% for a two FIFO and a four FIFO
configuration, respectively.

1) Stalls at Dispatch: As mentioned in Section III that
our heuristic increases the dispatch throughput by reducing
the unnecessary stalls. We observed that for a four FIFO
configuration our heuristic reduces stalls at dispatch by 55%
and 62% for SPECFP and SPECINT, respectively. For a two
FIFO configuration we obtain even more reduction in stalls, as
the speedup obtained is higher for a two FIFO configuration.



C. Detailed analysis

In order to better understand the performance benefits, we
quantify them in this section. For this purpose we have chosen
three FIFO configurations: two, four and eight.

It would also be interesting to compare FIFO based out-of-
order processor to conventional issue logic based out-of-order
processor. For this purpose we have replaced the FIFO logic
with a CAM issue logic8, in our out-of-order processor. All
the numbers shown in this section are normalized to this CAM
issue logic.

1) Effect of Early Release: Figure 9 shows the impact in
performance of the early release mechanism if applied to a
dependence-based heuristic, as shown by early rel. Clearly,
early rel is 10% and 14% better than dep based for a four
FIFO configuration for SPECFP and SPECINT, respectively.
Moreover, for a two FIFO configuration early release mecha-
nism results in a gain of nearly 40% with respect to dep based
heuristic.
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Fig. 9: The Effect of early release

We also compare the early release to a FIFO with double the
number of entries to sixteen, as shown by size 16 in Figure
9. Increasing the size of a FIFO merely adds entries to the tail
of the FIFO. Whereas, the early release mechanism releases
entries from the head, which are critical for steering heuristic.

2) Enhanced Steering Heuristics: Figure 10 shows the
performance of our enhanced steering heuristics. Rdy no is
the one that reduces the stalls due to Rdy no (see Section
III-B), whereas Tail no is the one that reduces the stalls due
to both Rdy no and Tail no.
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Fig. 10: Enhanced Steering Heuristic

3) Effect of per FIFO Issue Width: The performance of
enhanced heuristics with FIFOs that could issue two micro-
ops is shown by Rdy no er iw 2 and Tail no er iw 2 in

8Details in Table I.
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Fig. 11: The Effect of Per FIFO Issue Width

Figure 11. Clearly, the benefit of increasing per FIFO issue
width is evident for a two FIFO configuration. For a two
FIFO configuration in particular with Tail no er heuristic we
obtain a speedup of 13% and 10% for SPECFP and SPECINT,
respectively with respect to the configuration where per FIFO
issue width is one.

D. Commit Logic Study

As explained earlier the atomic commit constraint of su-
perblocks causes the conventional ROB based processor to
stall. Figure 12 shows the reduction in stalls obtained by our
SOB/SRRT commit logic with respect to conventional ROB
based processor. Nearly 25% and 22% of resource related
stalls are reduced in SPECFP and SPECINT, respectively.

The larger superblocks in SPECFP leads to more stalls,
as it results in more µ-ops waiting in the ROB. Hence the
performance improvement obtained in SPECFP is notably
larger than that in SPECINT. Figure 12 shows that in SPECFP
we obtain a speedup of 12%, and 1.5% in SPECINT, with
respect to conventional ROB based processor.
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In Figure 13 we show the impact in performance by limiting
the number of simultaneous superblocks in the pipeline. In
order to limit the number of simultaneous superblocks, we
limit the number of SRRTs. This is exactly equivalent of
limiting number of SOB entries. We show speedups of three
different configurations with eight, four and two SRRTs. The
speedups are normalized to the one with unbounded number
of SRRTs.

As is evident from the figure that an eight SRRT con-
figuration is as good as an unbounded SRRT configuration.
Moreover, a four SRRT configuration provides performance
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Fig. 13: The Effect of SRRT

that is within 3% of the unbounded case. Hence, a pool of
four SRRTs and a SOB with four entries seems to be a good
trade-off between performance and complexity.

E. Power and Energy Results

We use Wattch 1.02 [15] to quantify the power dissipated
and energy consumed. The power results shown here are using
the conditional clock gating[15]. All the results in this section
are normalized to the CAM issue logic configuration.

1) Power Results: Figure 14 shows the normalized power
dissipated by the co-designed processor implementing differ-
ent steering heuristics9. With respect to the processor with
dependence based steering heuristic our enhanced steering
heuristic dissipates 12% and 14% more power for SPECFP
and SPECINT, respectively.
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Fig. 14: Normalized Power Results

We also measured the power dissipated by the individual
units. Together the issue and the dispatch logic of the proposed
enhanced steering heuristic dissipates nearly 56% and 52%
more power for SPECFP and SPECINT, respectively, com-
pared to dependence-based heuristic. The power dissipated by
these units is still nearly 2% of the power dissipated by the
processor.

Even though our heuristic dissipates more power, it is
still more power-efficient than both the dependence-based
heuristic and the CAM issue logic. By plotting power against
performance normalized to CAM issue logic we quantify this
claim in Figure 15. Any point that falls below the line y = x
is more power-efficient than CAM issue logic.

9Four FIFO configurations.
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Fig. 15: Normalized Power and Performance Results. The
point 1,1 corresponds to CAM issue logic.

2) Power Results SOB and SRRT: We modeled both the
SOB and SRRT using RAM array, to quantify the power
dissipated. We assumed an eight-entry SOB and eight SRRT
configuration10. The SOB has eight ports and each entry is
five bytes wide.

We observe that our proposed processor dissipates 6% less
power compared to a ROB-based processor. This main gain is
due to the fact the SOB is multiple-folds smaller than a ROB.
Even though there are multiple rename tables, at any given
cycle at most two SRRTs will be accessed. A write access to
a SRRT is made when a µ-op being renamed is a live-out of
the superblock, while a read access to a SRRT is made when
state is committed to BRRT.

3) Energy Results: For devices that run on battery, energy
is an important design constraint. If a processor finishes
executing the same task by consuming lesser energy, it would
be preferable11. Figure 16 shows that the enhanced steering
heuristic consumes 7% less energy than CAM issue logic. The
dependence-based heuristic, on the other hand, consumes 3-
4% more energy.

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

ammp
wupwise

swim
mesa

art equake

apsi
sixtrack

lucas
facerec

fma3d
mgrid

applu
average

gzip
vpr

mcf
crafty

eon
bzip2

perlbmk

parser
gap

vortex
twolf

average

Pe
rc

en
ta

ge

dep based Enhanced

Fig. 16: Normalized Energy Results

V. RELATED WORK

IBM Daisy [7] and BOA [8] projects have proposed a
VMM to binary translate Power PC instructions to VLIW
instructions. The generated VLIW instructions are scheduled
by the VMM at the scope of tree-regions, superblocks or
atomic blocks. This provides a much better scope in scheduling

10Four-entry SOB and four SRRTs are sufficient, but a bigger configuration
provides an upper bound on power dissipation.

11Given the power and execution time are reasonable.



than that provided by basic blocks. Using a VLIW microar-
chitecture drastically cuts down the complexity in the logic
and power.

Transmeta Crusoe [16] is a commercial co-designed pro-
cessor that uses a Code Morphing Software (CMS) [17] to
perform multi-staged emulation. Shadow copy of Register File
is used to check-point the register state before a superblock
starts executing. Working copy, as the name suggests, holds the
working register set of the superblock. Whereas, the memory
state is held in gated store buffers [11]. A special commit
operation updates the register and the memory state, at once.
Similar to DAISY [7] and BOA [8], Crusoe uses VLIW
processors to cut down complexity and power. Aliasing HW
is added to [18] detect any memory ordering violation.

The only similarity between our work and that of IBM
DAISY, BOA or Crusoe is the VMM part. Our microarchi-
tecture is different since we use a FIFO based out-of-order
logic. Secondly, we use SOB and SRRT based atomic commit
and reordering mechanism.

Akkary et al. [19] have proposed a large instruction window
processor using checkpoint processing and recovery. They
replace the conventional ROB with a checkpoint buffer, which
is similar to the SOB that we have proposed. However, they
do not execute superblock, instead checkpoints are taken at
branches that have low-confidence of being predicted correctly.
We instead checkpoint when the first instruction of the su-
perblock is renamed. Their proposal still requires a buffer to
hold instructions in order to bulk commit. We instead propose
per superblock map table that holds the register state of the
superblock.

Moreover, since we use VMM to form superblock and
get rid of confidence-based predictor. VMM also helps in
providing early register recycling as number of consumer of
non live-out register are determined. More importantly, our
focus in this paper is not to provide a large instruction window
processor, but to provide a co-designed out-of-order processor
which is more power-efficient.

Conventional Issue Queue logic is based on CAM and
RAM structures [4], leading to high complexity and power
dissipation [5]. Palacharla et al. [4] propose a multiple FIFO
based issue logic, where instructions are issued from the
head of FIFOs. They propose a dependence-based heuristic
as described in the paper to steer instructions to the FIFOs.
As shown in the Section I, the performance with this heuristic
declines sharply as the number of FIFOs are halved.

Canal and González [6] proposed several schemes to issue
instructions. In one of their schemes instructions are placed
in a buffer that is indexed by the physical register identifier.
It is based on the observations that nearly one-quarter of the
dynamic instructions have one of their operands available at
dispatch. Their another scheme is based on computing the
issue cycle of each instruction at dispatch.

VI. CONCLUSION

This paper presents a complexity-effective co-designed out-
of-order processor. Our proposed steering heuristic, compared

to the dependence-based heuristic, obtains speedups of 25%
and 24% for SPECINT and SPECFP, respectively. We have
also shown that our proposed steering heuristic based proces-
sor consumes 10% less energy than the previously proposed
steering heuristic.

We have also proposed an early issue queue entry releasing
mechanism. Issue queue entries are released at the issue stage;
given that no loads were issued, a fixed number of cycles,
earlier. This helps in reducing the pressure on issue queues.

In order to efficiently execute superblocks, we codesign the
commit logic. We have proposed two structures - Superblock
Order Buffer (SOB) and Superblock Register Rename Tables
(SRRT) - in order to acheive this. Such a processor dissipates
6% less power than a conventional ROB based out-of-order
processor and performs 12% better over a conventional ROB
based processor.
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