
FASTM: A Log-based Hardware Transactional Memory

with Fast Abort Recovery *

Marc Lupon

Universitat Politècnica

de Catalunya

mlupon@ac.upc.edu

Grigorios Magklis

Intel Barcelona Research Center

Intel Labs-UPC

grigorios.magklis@intel.com

Antonio González

Intel Barcelona Research Center

Intel Labs-UPC

antonio.gonzalez@intel.com

Abstract—Version management, one of the key design di-
mensions of Hardware Transactional Memory (HTM) systems,
defines where and how transactional modifications are stored.
Current HTM systems use either eager or lazy version man-
agement. Eager systems that keep new values in-place while
they hold old values in a software log, suffer long delays
when aborts are frequent because the pre-transactional state is
recovered by software. Lazy systems that buffer new values in
specialized hardware offer complex and inefficient solutions to
handle hardware overflows, which are common in applications
with coarse-grain transactions.

In this paper, we present FASTM, an eager log-based HTM
that takes advantage of the processor’s cache hierarchy to
provide fast abort recovery. FASTM uses a novel coherence
protocol to buffer the transactional modifications in the first
level cache and to keep the non-speculative values in the higher
levels of the memory hierarchy. This mechanism allows fast
abort recovery of transactions that do not overflow the first
level cache resources.

Contrary to lazy HTM systems, committing transactions
do not have to perform any actions in order to make their
results visible to the rest of the system. FASTM keeps the
pre-transactional state in a software-managed log as well,
which permits the eviction of speculative values and enables
transparent execution even in the case of cache overflow.
This approach simplifies eviction policies without degrading
performance, because it only falls back to a software abort
recovery for transactions whose modified state has overflowed
the cache.

Simulation results show that FASTM achieves a speed-up
of 43% compared to LogTM-SE, improving the scalability
of applications with coarse-grain transactions and obtaining
similar performance to an ideal eager HTM with zero-cost
abort recovery.

Keywords-harwdare transactional memory; transactional co-
herence protocols; fast abort recovery; FASTM

I. INTRODUCTION

A high performance Transactional Memory (TM) system

must provide an efficient implementation of the mecha-

nisms that guarantee transactional semantics, offering fast

execution in case of infrequent conflicts and minimizing the

* This work is supported by the Spanish Ministry of Science and Innovation
and FEDER funds of the EU under contracts TIN 2007-61763 and Intel
Corporation. Marc Lupon is supported by an UPC-Research grant

impact of collisions among transactions when contention is

present.

Software Transactional Memory (STM) systems imple-

ment these mechanisms in software [1], Hardware Transac-

tional Memory (HTM) systems opt for hardware implemen-

tions [2]–[9] while Hybrid Transactional Memory (HyTM)

systems use a combination of the two [10], [11]. While

STM systems provide flexibility and portability, HTM and

HyTM systems provide accelerated implementations with

significantly lower overheads.

Version management is one of the key design dimensions

of a TM system, together with conflict detection and conflict

resolution. Version management defines how and where

transactional modifications are stored and what actions must

be performed at commit and abort time. Current HTM

systems fall into one of two distinct strategies for version

management: eager or lazy [12].

Lazy version management [4], [6], [13] keeps old (pre-

transactional) state in-place in memory and buffers new state

(values generated inside the running transaction) elsewhere.

This makes aborts fast, but commits have an overhead

because the new state must become globally visible. Most

lazy systems use the L1 caches to buffer new state, and

specialized coherency protocols [4], [7] to hide transactional

updates from the rest of the memory hierarchy. Other

implementations, like the one proposed for Rock [13],

store transactional modifications in a gated store buffer, the

content of which is drained at commit time.

In case the new state overflows its buffering space, some

lazy HTM systems behave similar to HyTM systems, and

fall-back to a STM implementation. Some other lazy HTMs,

such as LTM [3], VTM [6] or FlexTM [7], store overflowed

state in a data structure kept in memory, which must be

accessed on cache misses and on commits. Falling-back

to STM incurs significant performance loss while fully-

hardware HTMs require complex and cumbersome hardware

mechanisms. This makes transactional state overflows the

main drawback of lazy version management systems.

On the other hand, eager version management [5] puts

new state in-place in memory and buffers pre-transactional

state elsewhere, usually a software-managed log structure in



Hardware Abort Overflow Commit
Support Recovery Policy Process

LogTM-SE [14] Logging Software Update -
Memory

Rock HTM [13] Store Hardware Notify Drain
Buffer Software Buffer

HyTMs [10], [11] L1 TX Hardware Run STM Update
Cache Memory

FlexTM [7] L1 TX Hardware Software Update
Cache Structure Memory

FASTM L1 TX Hardware Update Clean L1
Cache Software Memory State

Table I
CHARACTERISTICS OF HTM SYSTEMS

cacheable memory [5], [8], [9], [14]. This makes commits

fast, since data is already stored in memory, but aborts have

an overhead because the old state must be recovered.

Also, since the pre-transactional state is stored in the log

and can be recovered, transactional modifications can be

put anywhere in the memory hierarchy, so eager systems

do not suffer from cache/buffer overflows like lazy ones.

LogTM-SE [14] is an example of an eager HTM. Table I

summarizes the main characteristics of several state-of-the-

art HTM systems.

Previous studies [15] have claimed that common-case

transactions were short and did not usually conflict. How-

ever, newer, more complex workloads that are believed to

better represent future transactional applications [16] exhibit

a significant number of large and/or conflicting transactions.

The execution of large transactions has uncovered perfor-

mance issues with current implementations of both eager

and lazy version management HTMs.

Eager log-based systems suffer considerable delays in

the execution of conflicting large transactions due to the

overheads of abort recovery [17], [18]. Moreover, slow

aborts may exacerbate contention, as many conflicts involve

transactions in their abort-recovery phase, which in turn pro-

vokes more aborts. In lazy HTMs, the overflow mechanism

becomes critical given that cache evictions are common in

coarse-grain transactions that access a large number of cache

lines, as we will show in Section IV, where we present our

experiment results.

All of the above has led us to develop FASTM, a log-

based HTM with eager version management that keeps both

the new state and the pre-transactional state in memory

to provide fast commits and aborts. FASTM achieves this

by pinning down new values in the L1 caches, similar

to lazy version management systems, but with two key

differences: (a) transactions update memory in-place, so

commit requires no special actions, and (b) overflows are

handled gracefully by using a software-managed log, like

eager version management systems.

In FASTM, we also change the cache coherence protocol

and the L1 cache controller, to guarantee that if there are

no overflows, the old state is in-place in the higher levels of

the memory hierarchy. Aborts in FASTM are fast, because

they only require the invalidation of the L1 transactional

lines. On the other hand, since the pre-transactional values

are kept in a log on the side, if a transactionally modified

line is evicted from the cache the system can recover the old

values from the log (using the software abort mechanism).

Our evaluation of FASTM shows that our proposal

achieves a speed-up of 43% on average compared to

LogTM-SE, a state-of-the-art eager log-based HTM. Our

analysis shows that FASTM substantially accelerates appli-

cations with coarse-grain transactions, because it minimizes

the time spent on abort recovery and it reduces the number of

conflicts without losing performance in case of cache over-

flows. In fact, our approach achieves similar performance to

an idealized eager HTM system with instantaneous (zero-

latency) abort recovery.

The remainder of the paper is organized as follows. In

Section II, we give an overview of the FASTM system,

whereas in Section III we describe in detail the basic

transactional operations of FASTM. In Section IV, we show

the results of the evaluation of our proposal. In Section V,

we present related work in HTM. Finally, in Section VI, we

conclude the paper.

II. THE FASTM SYSTEM

FASTM is an eager HTM system based on LogTM-

SE [14], so our proposal requires mostly the same hardware

support. FASTM uses two hardware signatures to track

transactional accesses: a Read signature to identify read

conflicts and a Write signature to detect write conflicts in

case of overflow. Also, it keeps a software log in the same

way as log-based systems: each transactional store copies the

old value to the log before updating the memory with the

new value. We assume that logging is a dual-phase process

where, (1) the old line is brought to the processor and is

written in the first free entry of the log and (2) the new value

is stored in the cache. The combination of the signatures and

the software log allows FASTM to gracefully handle cache

overflows.

The novelty in FASTM is in the way it manages the

transactional state and in its abort recovery mechanism.

Following the example of many lazy version management

systems [6], [7], FASTM utilizes a new coherence protocol

for the L1 cache (we call it TMESI).

TMESI is a write-back protocol that provides fast commits

because it does not hide transactional updates from the

memory hierarchy—FASTM is an eager version manage-

ment system—but it does enforce the following condition:

transactionally modified lines are “pinned” in the L1 cache

(they cannot write back) to guarantee that a valid copy of

the pre-transactional version of the line exists in the memory

hierarchy until commit/abort time (or until an overflow

occurs). This operation is similar to some Thread-Level

Speculation protocols [19].



Figure 1. TMESI cache transition diagram

To allow this special handling of transactional stores,

TMESI modifies the classical MESI protocol to put said

lines to a new state, named T, where they persist until the

transaction commits, aborts or overflows. Therefore, FASTM

requires, as it is shown in Figure 1, an extra bit to encode

the T state and some logic to identify transactional stores.

These T lines are also used to detect conflicts among

transactions, so the Write signature only contains the ad-

dresses of lines that overflow (get evicted from) the L1

cache. This fact reduces the aliasing in the Write signature,

increasing its fidelity.

With the TMESI protocol, the system guarantees that if

no overflow occurs, the old values are still in-place in the

higher levels of the memory hierarchy. If a transaction that

has not overflowed the L1 cache aborts, FASTM provides

a very fast abort mechanism: it simply invalidates the lines

modified by the transaction (this is a silent invalidation, more

on this later).

If an overflowed transaction aborts, FASTM falls back to

a software recovery mechanism similar to that employed in

LogTM-SE. The software abort recovery process requires

just a few registers to hold the last entry of the log, the

address of the abort recovery routine and the Program

Counter (PC) of the current transaction.

Like most of the eager HTM implementations, FASTM

performs eager conflict detection and eager conflict reso-

lution. FASTM borrows the conflict detection engine from

LogTM-SE, where the directory forwards transactional re-

quests to the private caches. Moreover, as it is described in

Section IV-E, FASTM supports multiple resolution policies.

Figure 1 shows the principal state transitions of the

TMESI coherence protocol. In the diagram, the triggering

message is written before the slash and its associated action

after (‘–’ means none). TStore and TLoad are memory

accesses produced inside a transaction. Fwd GetS is a

directory forwarding load request from a remote processor,

Fwd GetX* is a forwarding write request without a conflict.

In case of conflict (Fwd GetX), the line remains in the

same state, sending a Nack to the requester. WBack action

pushes the line to the higher levels of the memory hierarchy.

Replacement indicates a cache eviction. In the case of

replacing a transactional line, a set of overflowed actions are

required (OV actions). Detailed explanation of the TMESI

transitions is presented in Section III.

III. FASTM TRANSACTIONAL OPERATIONS

This section describes how FASTM operates, explaining

in detail how transactional lines interact with the system.

We present the basic operations of the system and describe

cache replacements and the mechanism for abort recovery.

For our discussion we will assume a CMP system with

single-threaded cores and two levels of caches, where the

L1 is private per core and the L2 is shared. Coherency is

implemented using a directory at the L2 cache.

A. Transactional Loads

Assume a core C0 that performs a transactional read

(TLoad) operation. In FASTM, TLoads are performed as

regular loads. However, in order to maintain transactional

coherency, the TLoad address must be added to the Read

signature of C0, which is used to detect conflicts with remote

transactional stores. C0 only has to check for conflicts when

loading a line that is not present in its L1 cache. In this case,

C0 must request the line from the directory in the L2 cache,

which serves the line if there are no writers. If there is a

writer, the directory forwards the request to the core that

owns the line (assume core C1).

When C1 receives the forwarding read request

(Fwd GetS), C1 must acknowledge it. If C1 has the

line in its L1 cache in T state (i.e., it is a transactional,

non-oveflowed line) then it sends a Nack reply to C0 and

the conflict is resolved according to the conflict resolution

policy.

If the requested line is not in T state or it is not in

C1’s L1 cache, then C1 must check its Write signature.

This is necessary to guarantee coherence for transactions

that overflow the cache. If there is a match in the signature,

C1 replies to C0 with a Nack. Otherwise, the line moves to

the S state and, if the line was previously in the M state, C1

forwards the data to C0 and also writes it back to the L2

(this is the same as in a typical MESI).



Figure 2. Transactional store operation

B. Transactional Stores

Assume a core C0 that performs a transactional store

(TStore) operation. If C0 has the line in its L1 cache in

an exclusive (T or E) state, it changes the cache state to

T and the TStore completes immediately.

If the line was previously written by C0 inside a trans-

action that has already committed, or by non-transactional

code, the line may be in C0’s cache in the M state. If so,

then C0 must write-back the line data to the L2 before

transitioning the line to the T state and completing the

TStore. This write-back does not generate any coherence

requests to the other L1 caches, but it is necessary to

guarantee that the L2 always has the correct pre-transactional

state.

In Figure 2 we can see and example of the case where

C0 misses in the cache (having the line in the S state is

identical). The left (right) of the figure shows the state of

the system before (after) the TStore. When C0 misses in its

L1 (step 1), it requests the line from the directory (step 2),

and the directory forwards the request (Fwd GetX) to the

line current owner, in this case C1 (step 3).

If C1 has the line in the T state, it Nacks the request di-

rectly without checking the signatures. Otherwise, it checks

its Read and Write signatures to detect conflicts with the

requesting transaction (step 4). If a positive match is found,

C1 Nacks the request from C0 and the conflict resolution

mechanism kicks in. If the line is not being accessed by any

transaction (i.e., C1 has it in M, or E state), the directory

gives the ownership to C0, invalidating all other copies of

the line (in this case C1).

With MESI, if C1 has the line in M state it must forward

the line data to C0 before C0 can become the new owner of

the line. In TMESI, the L2 cache must always have a copy

of the old value in order to guarantee correct abort recovery

for non-overflowing transactions. For this reason, C1 also

sends a copy of the forwarded line to the L2 (step 5) before

relinquishing ownership of the line to C0 (step 6), allowing

C0 to safely write the transactional value (step 7-8).

C. Transactional Cache Replacements

Assume a core C0 that replaces a line with transactional

modifications. In FASTM, cache evictions of lines in T state

write back the speculative values to the higher levels of the

memory hierarchy, similar to evictions of lines in M state.

This is analogous to other eager log-based HTM systems,

and it is safe to do because the pre-transactional values are

kept in a software log. Nonetheless, the system must perform

some actions before pushing the speculative data to the L2

cache.

First, the evicted line address must be added to C0’s Write

signature. The directory maintains as the owner of the line

the current core (C0) and will forward all future remote

requests to it. As discussed earlier, upon receiving a remote

request C0 will check its Read and/or Write signatures to

discover conflicts. If the C0 evicted line is also replaced from

the L2 cache, the request is forwarded to all the processors,

which must check their signatures. This fact permits the

conflict detection engine to identify collisions that involve

evicted transactionally written lines.

Second, a transaction overflow flag in C0 is asserted to

inform the processor that the transaction has to be aborted

by software. In FASTM, we have chosen to write all the

updated lines in the software log, to allow software abort

recovery.

An alternative, is to only insert overflowed lines in the

software log (instead of all updated lines). This approach

is more efficient, because it reduces abort recovery time

of overflowed transactions, given that fewer lines must be

restored by the software routine. Moreover, this results

to less cache pollution (the software log is in cacheable

memory) which may result in less transactional evictions.

However, this hybrid solution complicates the abort recov-

ery mechanism, which must maintain the atomicity of a dual

phase hardware/software abort. The upside of maintaining

the software log for all updated lines is that it allows the

use of mechanisms like those of LogTM-VSE [20] to survive

context switches or page faults.

D. Committing Transactions

FASTM provides, like other eager HTM systems, a fast

commit, even for overflowed transactions. FASTM only

commits consistent transactions, therefore no additional ac-

tions are needed to guarantee consistency. In FASTM, a

committing transaction first flush-clears the T bit of all cache

lines, moving all T lines to M, and then releases the signa-

tures. Notice that replaced lines do not require any commit

action, because transactional modifications are already in the

memory hierarchy. In contrast to lazy version management

schemes [4], our system does not require sending state

updates to the directory. Instead, the directory already has

the committer as the owner of the line (it acquired ownership

during the execution of the transaction).



E. Aborting Transactions

FASTM uses a hardware-accelerated abort recovery mech-

anism for non-overflowed transactions and a software abort

recovery mechanism for transactions that have evicted lines

in the T state. The processor decides which of the two

recovery mechanisms applies by checking its overflow flag.

Non-overflowed transactions use the coherence protocol

to discard transactional modifications. This process is per-

formed by silently invalidating all the T state lines in the L1

(the directory is updated lazily by future requests). Hence,

when the transaction restarts again, it must re-acquire the

ownership of each line. This can be safely done because the

L2 cache keeps the pre-transactional state.

Assume core C0 aborts and now core C1 requests a

line that C0 wrote inside the aborted transaction. First, the

directory will forward the request to C0 since it is still the

owner. C0 acknowledges the request, informing C1 that it

(C0) is no longer the owner. Then, C1 will take the line

from the L2 instead, which still keeps the pre-transactional

value, and the directory will be updated. This lazy directory

update removes the communication with shared resources,

allowing a fast abort recovery.

The invalidation of T state lines increases the number of

L1 misses on restarted transactions. However, this situation

is not critical mainly for two reasons. First, most transactions

have considerably smaller write sets than read sets, so the

rate of L1 misses is not a bottleneck (read lines are not

invalidated in FASTM). Second, these L1 misses are served

faster than conventional L1 misses because these lines are

still owned by the aborted transaction.

Assume core C0 aborts and tries to re-acquire a line

invalidated by the fast abort mechanism. C0 requests the

line from the directory, which still has C0 as its owner. Thus,

the line can be directly served from the L2 cache, without

requiring coherency operations or signature checking.

Transactions that overflow the L1 are recovered by soft-

ware by taking a trap to the recovery handler. The recovery

handler is a software routine that walks the log in reverse

order and, for each entry, writes the logged data to its cor-

respoding place in memory. Notice that some of the T state

lines may be overwritten by the recovery handler. Such

writes are performed by non-transactional stores, moving

the lines from T to M. When the software abort-recovery

mechanism finishes, it returns control to the hardware.

Both the hardware and the software mechanisms release

the signatures when the recovery process finishes.

IV. EVALUATION

For the evaluation of FASTM we assume a Chip Multi-

processor (CMP) with 16 cores, as shown in Figure 3. The

system has a 16-node mesh interconnect that uses 64-byte

links with adaptive routing, where each node has a core, a

1 MB shared L2 cache and part of the directory. This is a

Non-Uniform Cache Access (NUCA) system, where the L2

Figure 3. System scheme with HTM support

Core 1.2 GHz in-order, single issue, single-threaded

L1 cache 32 KB 4-way, 64-byte line,
write-back, 2-cycle latency

L2 cache 16 MB 8-way, banked NUCA,
write-back, 15-cycle latency

Memory 4 GB, 4 banks, 150-cycle latency

L2 directory Bit vector of sharers, 6-cycle latency

Interconnect 16-node Mesh, 64-byte links, 2-cycle wire
latency, 1-cycle router latency

Signatures 2 Kb Parallel Chuckoo-Bloom filters

Table II
BASE SYSTEM PARAMETERS

cache is distributed among the cores. The system has four

memory controllers to access main memory. Each core has

two 2 Kbit signatures (Read and Write) to track transactional

memory accesses. Detailed system parameters are shown in

Table II.

The base system and the coherence protocols have been

simulated using the Simics [21] simulation infrastructure

from Virtutech and the GEMS [22] toolset from Wisconsin’s

Multifacet group. For our analysis we use applications from

the SPLASH-2 [23] and the STAMP benchmark suites [16],

and two microbenchmarks from the GEMS 2.0 distribution.

Table III provides important information about the appli-

cations we utilize. The first three columns show the bench-

mark suite, the application name, and its input parameters.

The fourth column (Tx Time) shows the time spent inside

transactions as a percentage of the total execution time, and

the next column (Cycles Tx) shows the average number of

cycles per transactions. These numbers were collected in

single-thread FASTM execution.

Table III also shows the classification of the applications

by with the granularity of their transactions. Fine-grain

applications (top half of Table III) spent most of their

time in non-transactional code and in small transactions,

which usually scale well. On the other hand, coarse-grain

applications (bottom half of Table III) spent most of their

time in big transactions that suffer important performance

penalties when they conflict.

A. HTM Base Systems

For our analysis we have chosen to compare FASTM

with two other eager version management HTM systems,



LogTM-SE FASTM

Suite Bench Input parameters Tx Cycles Commit Abort Abort Abort Abort Tx SW
Time Tx Rate Confl Rate Confl OV Abort

µbench
Btree 50% insertions, 100K Tx 49.75% 731.08 100000 0.71 56.7% 0.65 0% ≈ 0% 0%
Deque 5K dummy work, 100K Tx 1.13% 88.72 100000 2.12 53.1% 0.24 0% 0% 0%

Splash-2
Barnes 512 bodies 2.23% 617.18 2362 0.61 62.2% 0.49 0% 0.4% 0%
Raytrace teapot 0.15% 8.33 47766 0.73 49.6% 0.15 0% 0% 0%

STAMP

Kmeans 15/15 clusters, 16K points 9.14% 1513 21846 0.06 62.1% 0.02 0% 0.1% 0%

Ssca2 2
14 nodes, 9 edges, 9 length 9.27% 179.26 93684 0.1 ≈ 0% ≈ 0 0% 0% 0%

Bayes 32 vars, 1024 records 81.63% 63852 490 4.01 29.2% 1.92 0.4% 12.9% 5.7%
Genome 64K seg, 1K gene, 32 length 97.46% 5369 40037 0.16 40.3% 0.13 ≈ 0% 0.24% ≈ 0%
Intruder 4K traffic, 10 attacks, 4 pack 42.8% 1403 22500 3.34 52.5% 2.59 0.51% 0.85% ≈ 0%
Labyrinth 32*32*3 maze, 1024 routes 99.76% 97910 2048 2.31 68.3% 0.26 0% 17.3% 5.3%
Vacation 64K entries, 4K tasks, high 89,62% 18775 4096 0.18 12.6% 0.1 0 3.24% 0.26%
Yada 20 angle, 633.2 input mesh 99.92% 14203 2788 2.18 6.97% 2.06 ≈ 0% 12.3% 0.29%

Table III
FINE-GRAIN (TOP) AND COARSE-GRAIN (BOTTOM) BENCHMARK CHARACTERIZATION

although with different underlying mechanisms. The first

one, which serves as our baseline, is LogTM-SE, particularly

the implementation that is distributed with GEMS 2.0 [22].

The second one, is an idealized eager version management

HTM that servers as our upper-bound.

As explained earlier, LogTM-SE [14] keeps older values

with their respective addresses in a software log, which is

traversed by software in case of abort. The idealized system

is similar to an eager HTM, but it provides zero-latency

abort recovery. We emulate this behavior by modifying

LogTM-SE to use an infinite hardware buffer to keep the

log, and by allowing the entire buffer to drain in a single

cycle. Moreover, the idealized implementation uses perfect

signatures.

Both LogTM-SE and the ideal implementation use a

MESI coherence protocol with signature checking to de-

tect conflicts among transactions. In contrast, FASTM uses

TMESI to restore the pre-transactional state.

We have used the Stall conflict resolution policy for the

comparisons between LogTM-SE and FASTM. Stall is the

policy implemented by LogTM-SE [14]. After detecting

a conflict between two transactions, this policy stalls the

requester, who waits until the other transaction commits.

However, to avoid cyclical dependences among stalled trans-

actions, transactions must inform a centralized cycle-detector

when they are stalled. If a dependence cycle occurs, a times-

tamp determines the younger transaction that participates

in the cycle and aborts it. After recovery, an exponential

backoff is performed to guarantee progress.

We decided to use the Stall conflict resolution policy

for all the comparisons between LogTM-SE and FASTM

for two main reasons. First, this policy minimizes the

number of aborts, which become critical in an HTM with

software abort recovery (also, by minimizng aborts we are

conservative in how much FASTM improves over LogTM-

SE). Second, by using the Stall policy for our evaluation

it is easier to compare our results with previous LogTM-

SE characterizations [12], [14], [17], [18]. In Section IV-E

we describe other conflict resolution policies and we discuss

about how they behave in LogTM-SE/FASTM.

Moreover, we have also evaluated FASTM-Sig, a variation

of FASTM where all TStore addresses are added to the Write

signature (remember that FASTM only updates the Write

signature with the T state lines that get evicted). Studying

this alternative allows us to determine the performance

benefits of reducing aliasing in the signatures.

B. Performance Analysis

Figure 4 presents the time distribution of LogTM-SE

(labeled L), FASTM (labeled F) and Ideal (labeled I) HTM

systems in their 16-threaded executions using the Stall

conflict resolution policy. The execution time has been

normalized to the 16-threaded LogTM-SE execution and

is broken down to: non-transactional and barrier cycles

(labeled Non-Tx and Barrier), the time spent in committed

transactions (labeled Good Tx), the time that is wasted

in non-useful work discarded from aborted transactions

(labeled Aborted Tx), the time spent in abort recovery

(labeled Aborting), the time that transactions remain stalled

waiting for a conflict to be resolved (labeled Stalled), and

the time that processors execute the exponential backoff after

aborting (labeled Backoff).

As it can be seen in Figure 4, FASTM has an average

speed-up of 43% over LogTM-SE, achieving similar per-

formance to the ideal approach. The benefit is especially

notable in some coarse-grain applications, where FASTM

obtains more than 5X speed-up with respect to LogTM-SE.

The reasons why FASTM outperforms LogTM-SE in all the

benchmarks are explained in the following paragraphs.

First, FASTM decreases the time spent in abort recovery,

which reduces overall execution time. As we can see in

Figure 4, the LogTM-SE recovery mechanism accounts for

5.6% of the total execution time on average. However, in

coarse-grain applications, like Intruder or Labyrinth, up to

15% of the time is spent in the software abort routine. This

undesirable overhead can be reduced if we apply a fast



Figure 4. 16-threaded normalized distribution time of HTM systems

abort recovery mechanism. In fact, FASTM only spends,

on average, 0.2% of the execution time to restore the pre-

transactional state.

Second, by reducing the abort recovery time, FASTM

decreases the number of conflicts that involve transactions

in their abort recovery phase. In LogTM-SE, the transaction

is alive until the very end of the abort recovery proce-

dure. Thus, remote transactions that want to access to data

owned by the aborting transaction will generate conflicts.

As FASTM aborts transactions faster, most of the conflicts

produced in the LogTM-SE abort period disappear. This

benefit can be seen from the data in Table III, which shows,

for both HTM systems, the rate of aborts per transaction

(labeled Abort Rate) and the percentage of aborts caused

by, at least, one transaction that is aborting (labeled Abort

Confl).

Although LogTM-SE does not lose much performance

in fine-grain applications due to their parallel nature, some

high-contention benchmarks, like Deque or Barnes, are far

from the Ideal because more than 15% of the execution time

is devoted to conflict management. Coarse-grain applications

that have lots of aborts, like Bayes, Intruder or Yada, also

require a large number of backoff or stall cycles (up to

60%) in LogTM-SE. In these benchmarks, the fast abort

recovery of FASTM reduces the time wasted in non-useful

transactional work, the time spent in stalled transactions and

the time that processors execute the backoff.

C. Scalability Analysis

Figure 5 shows the scalability of 16-threaded applications

run with LogTM-SE, FASTM, FASTM-Sig and Ideal. The

baseline is a single-threaded LogTM-SE execution. As it can

be seen, fine-grain applications that execute small transac-

tions exhibit good scalability in the majority of TM systems

given that most of their time is spent in non-transactional

code, except for Raytrace and Ssca2, where scalability is

lower because threads must wait in barriers.

Genome and Vacation are coarse-grain applications that

scale well because they present few aborts. However, other

applications with large transactions do not scale because

most of the transactions conflict or overflow. This puts a

lot of pressure on the version management mechanism and

the conflict resolution policy. Benchmarks like Genome,

Intruder or Labyrinth scale poorly with LogTM-SE because

large transactions are recovered by software. In contrast,

FASTM significantly improves their scalability, obtaining

significant speed-up with respect to the single-threaded

execution.

FASTM can also take advantage of the cache T state to

detect conflicts and to reduce the pressure on signatures,

which may lead to less false conflicts. However, this fact is

not critical in the majority of the benchmarks. As can be

seen in Figure 5, benchmarks with small or medium size

transactions do not suffer from false positives when 2 Kbit

signatures are used. Only Labyrinth, which executes huge

transactions, gains from this enhancement, showing a speed-

up of 16% in FASTM vs FASTM-Sig.

On the other hand, FASTM-Sig facilitates the use of

mechanisms like those of LogTM-VSE [20] to survive

context switches or page faults (because the write set of the

transaction is already in the Write signature). With FASTM,

the Write signature has to be reconstructed from the log (the

hardware Write signature does not include the T state lines

in the L1). Given that our evaluation shows that the fidelity

of the Write signature is not critical, FASTM-Sig may be a

good alternative to simplify transaction virtualization.

D. Overflow Analysis

Figure 5 shows that, in fine-grain applications, FASTM

achieves similar performance to the ideal eager implemen-

tation. This is because fine-grain applications almost never

evict transactional cache lines, so no software aborts are

performed. This can be seen from the data in Table III,

where we can see the number of committed transactions

(labeled Commit) and the percentage of transactions that

evict transactional lines from the L1 cache (labeled Tx OV).

We can also see the percentage of aborts that are restored

by software (labeled SW Abort).

Although some coarse-grain benchmarks, like Bayes,

Labyrinth, Vacation or Yada, have an important number



Figure 5. 16-threaded scalability of HTM systems

of overflows, FASTM recovers the majority of the aborted

transactions almost immediately by hardware. Therefore,

FASTM performs similar to the ideal implementation for

most of the benchmarks. The only exceptions are Bayes and

Labyrinth, which still suffer a significant amount of software

aborts and false conflicts caused by finite signatures.

E. Conflict Resolution Analysis

The Stall conflict resolution policy sometimes exhibits

pathological behavior that can affect the performance of the

application [12]. For this reason, we have evaluated both

LogTM-SE and FASTM with three other conflict resolution

policies:

Abort: Aggressive policy that tries to eliminate the con-

flicts generated by stalled transactions. When a conflict is

detected, the system aborts the requester, instead of stalling

the transaction [24]. It also requires a backoff to avoid

multiple aborts of transactions.

Timestamp: Policy that eliminates the backoff cycles by

guaranteeing the progress of the oldest transaction, based

on [24]. If a processor receives a conflicting request, it

checks the remote timestamp and, if it is older than the local

timestamp, the processor aborts the local transaction after

sending a Nack to the requester together with its timestamp.

When a processor receives a Nack, it checks the remote

timestamp and, if it is older than the local, it aborts the local

transaction. Otherwise, it keeps issuing the request until the

conflicting transaction finishes its abort recovery process.

Hybrid: Enhaced policy described as EEHP in [12]. It

works like the Stall policy, but write requests abort younger

readers in order to eliminate starvation of the writer.

We have evaluated LogTM-SE with all the conflict reso-

lution policies (the results are not shown due to space con-

traints), and we have found that the Stall policy outperforms

the Abort and the Timestamp policy in LogTM-SE because

it reduces the number of software aborts.

LogTM-SE with the Hybrid policy achieves better re-

sults than LogTM-SE with the Stall policy in benchmarks

with small transactions and high-contention, like Barnes

or Deque, or in applications with read-only transactions,

like Btree or Genome. In these situations, LogTM-SE with

Hybrid obtains similar performance to FASTM given that

most aborted transactions do not need to restore too many

lines. However, LogTM-SE with the Stall policy presents

better performance in applications with large transactions,

like Vacation or Yada.

FASTM can take advantage of aggressive conflict reso-

lution policies because it minimizes the impact of aborts.

Figure 6 shows the time distribution of FASTM with Stall

(labeled S), Abort (labeled A), Timestamp (labeled T) and

Hybrid (labeled H) conflict resolution policies normalized

to the 16-threaded execution of FASTM with Stall.

The Abort policy removes stalling transactions in case

of conflict given that transactions automatically abort.

Labyrinth can benefit from this policy, because conflicts

that involve stalled transactions disappear. However, in

benchmarks with high-contention and small transactions,

like Barnes or Genome, the number of aborts augments

significantly, increasing the time spent in backoff.

The Timestamp policy improves some high-contention

benchmarks with variable-size transactions, like Genome

or Vacation, because it does not require backoff cycles.

Nonetheless, the Timestamp policy has some weaknesses.

First, it constantly aborts transactions, which increases con-

siderably the discarded work in coarse-grain applications

like Bayes. Second, a transaction remains stalled until the

younger conflicting transaction finishes its abort phase. Al-

though FASTM provides fast abort recovery, some transac-

tions do not abort instantaneously. This problem is critical

in benchmarks with software aborts, like Labyrinth.

The Hybrid policy improves our baseline because it

reduces the starvation of older writers without increasing

contention. Like in LogTM-SE, the Hybrid policy acceler-

ates applications with high-contention and small/read-only

transactions. Moreover, the fast abort recovery mechanism

allows FASTM to improve the performance of some coarse-

grain benchmarks as well, like Intruder or Vacation, which

discard a lot of work when transactions abort.

V. RELATED WORK

Herlihy and Moss [2] introduced TM as a new program-

ming paradigm that intended to make lock-free mechanisms



Figure 6. 16-threaded distributed time of FASTM conflict resolution policies

more efficient than blocking synchronization techniques. To

this end, they included hardware transactional support in

the microarchitecture, building a Hardware Transactional

Memory (HTM) system.

Transactional Coherence and Consistency (TCC) [4] pre-

sented a new consistency model based on transactions, using

the memory hierarchy to perform lazy data version man-

agement. A private cache buffers new values locally, while

a second level cache, which is shared among processors,

holds the old values. At commit time, transactions send all

their modifications to the shared cache, making the changes

visible to all the processors and propagating the write set to

the rest of the processors, which abort their transactions in

case of conflict.

Different proposals have been able to execute unbounded

transactions using finite hardware. Hybrid Transactional

Memories (HyTM) [10], [11] handle large transactions using

software mechanisms [1], whereas common-case, smaller

transactions use best-effort hardware.

Rock [13] will possibly be the first processor to include

transactional hardware support. Rock stores transactional

modifications in a gated store buffer, the content of which

is drained at commit time. In case of buffer overflow, the

system notifies an interruption and the software decides how

the overflowed transaction is re-executed.

RTM [25] is a HyTM that modifies the cache coherence

protocol to hide transactional updates in the L1. FlexTM [7]

adapts the RTM protocol by adding two states to the typical

MESI protocol. This fact allows the system to track the

lines used in transactions and to implement a more flexible

conflict management policy. Evicted transactional lines are

buffered in a hash structure, called Overflow Table, which

must be accessed by software to perform look-ups on cache

misses and to ensure permanent commits. A similar overflow

policy is implemented in LTM [3] or VTM [6].

UTM [3] proposed eager version management support

for unbounded transactions, storing overflowed old lines in

a software structure. This structure was walked to detect

conflicts, to store old values or to undo transactional updates.

LogTM [5] simplified this mechanism by storing old values

and their associated address in a private log. Read-Write

cache bits were used to detect conflicts and a software

routine restored the pre-transactional state in case of abort.

Other eager log-based HTM proposals use the version

management engine of LogTM. LogTM-SE [14] decouples

transactional state from caches, replacing the Read-Write

bits of LogTM with signatures [26]. OneTM [8] introduces

a permission-only cache to maintain consistency of evicted

cache lines. TokenTM [9] eliminates the false positives of

signatures by adapting the concept of token coherence to

detect conflicts among transactions.

VI. CONCLUSIONS

FASTM is the first eager version management HTM that,

like lazy version management approaches, takes advantage

of the processor’s cache hierarchy to provide fast abort

recovery. FASTM uses a novel coherence protocol to buffer

the transactional modifications in the first level cache and

to keep the non-speculative values in the higher levels of

the memory hierarchy. This mechanism accelerates the abort

recovery of large transactions, which is critical in eager log-

based implementations like LogTM-SE.

To handle cache overflows, FASTM follows a log-based

approach. Transactional cache lines are evicted in-place in

the memory hierarchy and old values are maintained in

a cacheable log, which must be restored by a software

routine. This approach simplifies overflow mechanisms of

lazy version management systems, that either need complex

specialized hardware to handle cache misses and to commit

overflowed lines or fall-back to software-only transactions.

We have evaluated FASTM with a heterogeneous set of

applications and conflict resolution policies. Our proposal

obtains, on average, a speed-up of 43% over LogTM-SE.

We have seen that the performance improvement is more

pronounced in applications with coarse-grain transactions,

because FASTM reduces considerably the time spent in

abort recovery as well as the number of conflicts. Although

our analysis shows that transactional cache replacements

are common in coarse-grain applications, FASTM does



not suffer performance penalties, because transactions that

overflow the caches do not usually abort.

Our evaluation of FASTM with different conflict res-

olution policies shows that having a fast abort recovery

mechanism favors aggressive policies that abort critical

transactions in situations with high-contention.

REFERENCES

[1] N. Shavit and D. Touitou, “Software transactional memory,”
in Procs. of the 14th ACM Symp on Principles of Distributed
Computing, Aug. 1995.

[2] M. Herlihy and J. E. B. Moss, “Transactional Memory: Ar-
chitectural Support for Lock-Free Data Structures,” in Procs.
of the 20th Intl Symp on Computer Architecture, May 1993.

[3] C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leis-
erson, and S. Lie, “Unbounded Transactional Memory,” in
Procs. of the 11th Intl Symp on High-Performance Computer
Architecture, Feb. 2005.

[4] L. Hammond, V. Wong, M. Chen, B. D. Carlstrom, J. D.
Davis, B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis,
and K. Olukotun, “Transactional Memory Coherence and
Consistency,” in Procs. of the 31st Intl Symp on Computer
Architecture, Jun. 2004.

[5] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and
D. A. Wood, “LogTM: Log-based Transactional Memory,” in
Procs. of the 12th Intl Symp on High-Performance Computer
Architecture, Feb. 2006.

[6] R. Rajwar, M. Herlihy, and K. Lai, “Virtualizing Transactional
Memory,” in Procs. of the 32nd Intl Symp on Computer
Architecture, Jun. 2005.

[7] A. Shriraman, S. Dwarkadas, and M. L. Scott, “Flexible
Decoupled Transactional Memory Support,” in Procs. of the
35th Intl Symp on Computer Architecture, Jun. 2008.

[8] C. Blundell, J. Devietti, E. C. Lewis, and M. M. K. Martin,
“Making The Fast Case Common And The Uncommon Case
Simple In Unbounded Transactional Memory,” in Procs. of
the 34th Intl Symp on Computer Architecture, Jun. 2007.

[9] J. Bobba, N. Goyal, M. D. Hill, M. M. Swift, and D. A.
Wood, “TokenTM: Efficient Execution of Large Transactions
with Hardware Transactional Memory,” in Procs. of the 35th
Intl Symp on Computer Architecture, Jun. 2008.

[10] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir,
and D. Nussbaum, “Hybrid Transactional Memory,” in Procs.
of the 12th Intl Conference on Architectural Support for
Programming Languages and Operating Systems.

[11] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen,
“Hybrid Transactional Memory,” in Procs. of the ACM SIG-
PLAN Symp on Principles and Practice of Parallel Program-
ming, Mar. 2006.

[12] J. Bobba, K. E. Moore, L. Yen, H. Volos, M. D. Hill,
M. M. Swift, and D. A. Wood, “Performance Pathologies in
Hardware Transactional Memory,” in Procs. of the 34th Intl
Symp on Computer Architecture, Jun. 2007.

[13] D. Dice, Y. Lev, M. Moir, and D. Nussbaum, “Early Expe-
rience with a Commercial Hardware Transactional Memory
Implementation,” in Procs. of the 14th Intl Conference on

Architectural Support for Programming Languages and Op-
erating Systems, Mar. 2009.

[14] L. Yen, J. Bobba, M. M. Marty, K. E. Moore, H. Volos, M. D.
Hill, M. M. Swift, and D. A. Wood, “LogTM-SE: Decoupling
Hardware Transactional Memory from Caches,” in Procs. of
the 13th Intl Symp on High-Performance Computer Architec-
ture, Feb. 2007.

[15] J. Chung, H. Chafi, C. Cao Minh, A. McDonald, B. D.
Carlstrom, C. Kozyrakis, and K. Olukotun, “The Common
Case Transactional Behavior of Multithreaded Programs,” in
Procs. of the 12th Intl Symp on High-Performance Computer
Architecture, Feb. 2006.

[16] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun,
“STAMP: Stanford Transactional Applications for Multi-
Processing,” in Procs. of The IEEE Intl Symp on Workload
Characterization, Sep. 2008.

[17] M. Lupon, G. Magklis, and A. Gonzalez, “Version Manage-
ment Alternatives for Hardware Transactional Memory,” in
Procs. of the 9th Workshop on Memory performance: dealing
with applications, systems and architecture, Oct. 2008.

[18] J. R. Titos, M. E. Acacio, and J. M. Garcia, “Characterization
of Conflicts in Log-Based Transactional Memory,” in Procs.
of the 16th Euromicro Conference on Parallel, Distributed
and Network-Based Processing, Feb. 2008.

[19] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A
Scalable Approach to Thread-Level Speculation,” in Procs. of
the 27th Intl Symp on Computer Architecture, Jun. 2000.

[20] M. M. Swift, H. Volos, N. Goyal, L. Yen, M. D. Hill,
and D. A. Woo, “OS Support for Virtualizing Hardware
Transactional Memory,” in Procs. of the 3rd ACM SIGPLAN
Workshop on Transactional Computing, Feb. 2008.

[21] P. S. Magnusson, M. Christensson, J. Eskilson, D. Fors-
gren, G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner, “Simics: A Full System Simulation Platform,”
IEEE Computer, vol. 35, no. 2, pp. 50–58, 2002.

[22] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R.
Marty, M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill,
and D. A. Wood, “Multifacet’s General Execution-Driven
Multiprocessor Simulator (GEMS) Toolset,” ACM SIGARCH
Computer Architecture News, vol. 33, no. 4, pp. 92–99, 2005.

[23] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta,
“The SPLASH-2 Programs: Characterization and Method-
ological Considerations,” in Procs. of the 22nd Intl Symp on
Computer Architecture, Jun. 1995.

[24] H. E. Ramadan, C. J. Rossbach, D. E. Porter, O. S. Hofmann,
A. Bhandari, and E. Witchel, “MetaTM/TxLinux: Transac-
tional Memory for an Operating System,” ACM SIGARCH
Computer Architecture News, vol. 35, no. 2, 2007.

[25] A. Shriraman, M. F. Spear, H. Hossain, V. Marathe,
S. Dwarkadas, and M. L. Scott, “An Integrated Hardware-
Software Approach To Flexible Transactional Memory,” in
Procs. of the 34th Intl Symp on Computer Architecture, Jun.
2007.

[26] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas, “Bulk Dis-
ambiguation of Speculative Threads in Multiprocessors,” in
Procs. of the 33th Intl Symp on Computer Architecture, Jun.
2006.


