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Abstract— Non-Uniform Cache Architectures (NUCA)
have been proposed as a solution to overcome wire delays
that will dominate on-chip latencies in Chip Multiprocessor
designs in the near future. This novel means of organization
divides the total memory area into a set of banks that provides
non-uniform access latencies and thus faster access to those
banks that are close to the processor. A NUCA model can be
characterized according to the four policies that determine its
behavior: bank placement, bank access, bank migration and
bank replacement. Placement determines the first location of
data, access defines the searching algorithm across the banks,
migration decides data movements inside the memory and
replacement deals with the evicted data.

This paper analyzes the performance of several alternatives
that can be considered for each of these four policies.
Moreover, the Parsec v2.0 benchmark suite has been used to
handle this evaluation because it is a representative group of
upcoming shared-memory programs for Chip Multiprocessors.
The results may help researchers to identify key features
of NUCA organizations and to open up new areas of
investigation.

I. Introduction

The continuing technological advances in the scale
of integration have ensured that the number of
transistors that can be integrated into a single chip
will double every two years. This prediction, known
as Moore’s Law [1], has been in place 40 years and it
is widely accepted that this trend will continue over
the next 10-15 years. Therefore, future processors
will have billions of tiny transistors. Against this
background, an important question that arises is how
current processors can efficiently use this technology.

Chip Multiprocessors (CMPs) have emerged as a
dominant paradigm in system design [2], [3]. Several
commercial microprocessors are beginning to include
multiple cores (2 to 8, depending on the model)
with a shared cache. Moreover, as we increase
the scale of integration, the chips include more and
more cores, which could lead to 64 processor cores
being placed on a chip by the middle of the next
decade.These multicore systems incorporate larger
and shared second-level caches with a homogeneous
access time. However, traditional cache architectures
assume that each level in the cache hierarchy has
a single and uniform cache access time, but the
increasing communication delay causes the hit time
of large on-chip caches to be a function of a line’s
physical location within the cache. Consequently,
cache access time becomes a continuum of latencies
rather than a single discrete latency [4], [5]. Non-
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Uniform Cache Architecture (NUCA), that was
first proposed by Kim et al [6], exploits this non-
uniformity to provide master access to cache lines
in those portions of the cache that are closer to the
processor.

The underlying concept behind a NUCA system
involves dividing the whole cache into smaller banks.
Each of these banks traditionally has a single discrete
latency, although this is much smaller than it would
be if the whole cache was a uniform cache. Data are
distributed among all the banks, so the total latency
for getting a single piece of data from a processor
includes the requesting and the responding routing
time from the processor to the bank containing the
requested data plus the latency of the bank. A
NUCA model can be characterized by the following
four policies that are involved in its behavior:
Bank Placement Policy, Bank Access Policy, Bank

Migration Policy, and Bank Replacement Policy.

This paper aims to analyze how NUCA performs
on a Chip Multiprocessor using the Parsec v2.0
benchmark suite. Starting from a base configuration,
it attempts to show the potential of each of the four
policies that characterizes the behavior in a NUCA
system. In this way, several alternatives for each
policy will be described, evaluated and discussed.

The remainder of this paper is structured as
follows. Section II presents the baseline model
that has been assumed, the simulation tools and a
brief description of the benchmarks used. Section
III describes the alternatives of each bank policy
considered in this study. Section IV presents the
results obtained during the simulations. Related
work is summarized in Section V. Finally, Section
VI outlines the main conclusions of this work.

II. Experimental Framework

A. Baseline Model

This paper deals with a L2 NUCA organization
based on that proposed by Beckmann and Wood
[7]. Figure 1 illustrates this baseline model. A die
with 8 cores on the edges and a shared L2 NUCA
cache in the center has been assumed. Each core
maintains its own private first level cache that is
divided for data and instructions. First level caches
are 2-way set associative while L2 NUCA cache
is 8 way set associative. The MOESI coherence
protocol maintains correctness and robustness in the
memory system. Moreover, the length of the wire
that connects the NUCA with the third level of the



Fig. 1. Organization of NUCA architecture.

memory hierarchy is the same for all cores and this
wire comes from the center of the NUCA structure.

The NUCA cache is divided into 256 smaller banks
structured in a 16x16 mesh connected via a 2D
interconnection network. In Figure 1, the NUCA
banks are represented by colored squares and the
interconnection network is represented by grey lines
(wires) and black points (network switches). The
NUCA cache is shared among all cores. There are 8
cores and each core owns 32 banks. These banks
are classified into two groups, local and central,
depending on their physical distance from their
owner core. This means that each core has 16 local
banks, 16 central banks and 224 distant banks.

Table I summarizes the CMP parameters assumed
for the baseline model.

Processors 8, 4-way SMT
Branch Predictor YAGS
Instr. Window / ROB 64 / 128 entries
Block size 64 bytes
L1 Cache (Instr/Data) 32 KBytes, 2-way
L2 Cache (NUCA) 8 MBytes, 256 Banks
NUCA Bank 32 KBytes, 8-way
L1 Latency 8 KBytes
NUCA Bank Latency 4 cycles
Router Latency 1 cycle
Memory Latency 350 cycles (from core)

TABLE I

CMP parametrization.

B. Simulation Tools

We used Simics [8], a full system execution-
driven simulator extended with the GEMS (General
Execution-driven Multiprocessor Simulator) toolset
[9], to characterize and simulate NUCA on a Chip
Multiprocessor. We also used a couple of GEMS
modules, Ruby and Opal, which improve CMP
functionalities. Ruby is a highly accurate timing
model, whereas Opal is an extension for supporting
out of order execution. GEMS provides detailed

simulation of multiprocessor systems and it makes
processors deal with SPARCv9 ISA. Finally, a Solaris
v10 operating system has been installed on the
emulated machine.

A CACTI 6.0 tool [10] greatly assists circuit
simulation. It estimates area, access time and power
dissipation of on-chip cache organizations. Assuming
a 45nm technology, we modeled the baseline NUCA
memory to determine the parameters of the cache
access time.

C. PARSEC v2.0 Benchmark Suite

The Princeton Application Repository for Shared-
Memory Computers (PARSEC v2.0) has been
recently released [11]. This benchmark suite contains
emerging applications and commercial solutions that
cover a wide area of working sets and allow current
Chip Multiprocessor technologies to be studied more
effectively [12]. In this paper we evaluate the whole
set of the PARSEC v2.0 benchmark suite with the
simlarge input data sets. Moreover, we forward
a significant number of instructions for preventing
initialization behavior and thread creation. Then, we
fast-forward while warming all caches for 500 million
cycles, and finally, we collect the statistics for the
following 200 million cycles.

III. Bank Policy Approaches

This section describes the alternatives of each
NUCA policy that will be further simulated and
analyzed.

A. Bank Placement Policies

This policy determines where a data element
should be placed in the NUCA cache memory when
it comes from the off-chip memory or from other
caches. It also determines in which set of banks
this data can be located during its life. A typical
configuration will allow placing data in some banks of
the NUCA caches. Notice that placing a data block
in any of the banks could require a non-affordable
search algorithm, whereas restricting data to just
one bank will minimize the benefit of achieving the
lowest access time for those data blocks that are
being accessed more frequently. Therefore, three
alternatives are considered:

• 1B + Static: The data is always placed in the
same bank and this depends on the address bits
of the data block.

• 16B + Static: A data block can be located in
16 banks during its life in the NUCA cache, that
is, in one of the local or central banks of each
of the eight cores in our CMP architecture. The
initial location of incoming data blocks from the
off-chip memory is determined statically among
the 16 banks and based on the address bits of
the data block. On the other hand, an incoming
data block from an L1 cache replacement is
always placed in the corresponding local bank
of the core that produced that eviction.



• 16B + Local: As in the previous approach,
a data block will reside in just 16 banks
corresponding to one local and one central bank
of each of the 8 cores. The difference is that the
initial location will always be the local bank of
the core that produces the eviction, regardless
of whether the data block comes from the L1
cache or the off-chip memory.

B. Bank Access Policy

This policy determines how to search for a data
block among the banks in which it is located. This
may involve a serial search, a parallel search or a
combination of both. Notice that serial search will
reduce the number of bank lookups but will increase
the miss resolution time. On the other hand, parallel
search reduces miss resolution time but increases the
number of bank lookups and thus, network traffic
and energy consumed. We evaluate the following
approaches:

• Serial: This is the most simple access approach.
It consists on accesing one by one all the suitable
banks where data can be located, until the
requested data is found or a miss is identified.
It saves network traffic and energy but miss
resolution time is far from optimal.

• Parallel: This algorithm searches in parallel in
all the banks where data can be located. This
approach is not affordable in terms of energy
and collapse of the network, but it does obtain
the lowest miss resolution time possible.

• Mixed: This approach combines the serial and
parallel searches but giving more weight to
parallel access. Assuming for instance that data
can be located in 16 banks (one local and one
central of each core), the searching algorithm is
divided in two steps. The first step searches in
parallel the local bank of the requesting core and
all the central ones (9 banks in total). If the data
block is not found, the second step is triggered
to simultaneously search the 7 remaining banks
(local to other cores).

In addition, a Perfect searching scheme is also
considered to avoid the effect of Bank Access policy
when analyzing Bank Placement, Bank Migration

and Bank Replacement policies. This non-affordable
approach knows exactly where data is located (off-
chip or in a specific bank) and, therefore, it returns
minimum access latency.

C. Bank Migration Policy

This policy determines if a data element is allowed
to change its placement from one bank to another
bank of the NUCA cache memory. It also defines
which data should be migrated, when this data
should be migrated and to which bank it should be
moved.This will place the most frequently accessed
data as close as possible to each core. The following
alternatives are considered:

• Static: There is no migration assumed in this

static approach. Therefore, when data is first
located in its corresponding bank, it will stay
there forever until it is replaced.

• Dynamic + Swapping: This
dynamic approach assumes a gradual migration
mechanism that moves data to the local bank
of the requesting core. This migration policy is
applied just after the core has accessed a data
block inside the NUCA cache. Assuming for
instance that data can be located in 16 banks
(one local and one central of each core), the
migration algorithm promotes the data to a
bank that is one-step closer to the processor that
has just accessed it. This movement, however,
may cause swapping between two banks in
the NUCA cache. Therefore, data from the
destination bank is moved one-step further from
the processor. The data accessed is gradually

promoted as follows: local bank (remote) central

bank (remote) central bank (requestor) local

bank (requestor). Thus, data located in the
bank farthest from the processor that has just
accessed it, requires three accesses in order to
be placed in the closest bank.

• Dynamic + Replication: This approach
behaves like the previous one with the difference
that data replication is allowed. Thus, data
is replicated instead of swapped in case the
line permissions state is read-only. Notice that
this behavior tries to prevent two cores from
constantly competing for the same data.

D. Bank Replacement Policy

This policy determines how NUCA cache behaves
when there is a data eviction from one of the banks.
In this case, the Least Recently Used (LRU) data
block within the same bank and cache-way, where
the incoming data would enter, is evicted from
the NUCA cache bank. Bank replacement policy
determines what to do with the evicted data, and the
following approaches are considered for this policy:

• Zero Copy: This approach assumes that an
evicted data element is sent back to the off-chip
memory.

• One Copy: Instead of sending the evicted
data to the off-chip memory, this approach
reallocates data in another lower-priority bank
further from the processor. Thus, the evicted
data that comes from a local bank is reallocated
to a central bank in the same core that produced
the eviction. If the evicted data comes from
a central bank, it is sent back to the off-chip
memory.

• Last Bank: An additional bank [13] can
be added to store all the evicted data from
the NUCA cache. In this case, this bank
behaves as a victim cache [14] instead of sending
data to the off-chip memory when replacement.
Furthermore, when a hit occurs on the Last

Bank, the data is moved to the regular NUCA
cache.



IV. Analysis of Results

In this section we evaluate the alternatives of one
NUCA bank policy assuming a fixed configuration
for the remaining polices. Therefore, the following
approaches are assumed as a baseline configuration
for each of the 4 policies that determine the behavior
of a NUCA cache.

• Bank Placement Policy: 16B + Static

• Bank Access Policy: Perfect

• Bank Migration Policy: Dyn + Swap

• Bank Replacement Policy: Zero Copy

A. Bank Placement Policy

We analyze placement restricted to a single bank
and placement allowed in a set of banks (16B Static

and 16B Local). The former does not apply all
baseline configuration approaches because access is
restricted to one bank and migration is not possible.
The latter approach assumes that a data block can
be located in 16 banks during its life in the NUCA.
16B Static places data according to the address bits,
whereas 16B Local always places data on the local
bank of the core that produces the eviction.
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Fig. 2. IPC of bank placement policy alternatives.

Figure 2 shows the performance potential of
the presented approaches. We observe that there
are no significant differences between 16B Static

and 16B Local approaches. We also observe that
16B approaches outperform 1B Static, but this
improvement is not as high as expected. Note that
1B Static does not allow data to be placed close to
requesting cores, meanwhile 16B approaches provide
data migration support. On the other side, 1B Static

spread data over the whole NUCA cache fairer than
16B approaches in which migrations concentrate
data in a few banks. We believe that a correlated
exploration of bank placement and bank migration
policies will provide better performance results when
a set of banks is considered to locate a data.

B. Bank Access Policy

In this policy we analyze two opposite approaches
(serial and parallel access). There is a trade-off
between both opposite alternatives when considering

performance in front of network traffic and energy
consumption. Serial access saves traffic and energy
but provides higher access time. A Parallel search
in bank access policy provides the lowest access time
but seriously increases the traffic contention and
energy used since more banks must be accessed.

Figure 3 shows the performance potential of
parallel weighted approaches. They heavily
outperform the serial approach. In particular,
Parallel and Mixed accesses achieve around an
average IPC of 2.55, whereas Serial access achieves
an average IPC close to 2.15. These results suggest
the suitability of a parallel access approach but,
further energy consumption analysis must be done to
find a good combination of performance and energy.
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Fig. 3. IPC of bank access policy alternatives.

C. Bank Migration Policy

This policy determines how movements among
banks can affect the performance of a NUCA cache.
We compare no migration with a dynamic migration
mechanism that moves data to the local bank of the
requesting core. Furthermore, dynamic migration
may or may not replicate data.

Figure 4 shows the performance potential of
a migration policy. We observe that migration
performs well in all cases. Therefore, a non-
migration approach does not seem to be a good
choice when only performance is considered. As
outlined in Section IV-A, we believe that there is
a high correlation between the bank placement and
bank migration policies. Therefore, further analysis
will be needed to combine both policies.

D. Bank Replacement Policy

We now evaluate several bank replacement policy
approaches. As explained before, Zero Copy sends
the evicted data back to the off-chip memory, One

Copy places data in another bank and Last Bank

assumes there is an additional bank which has the
same size as the rest. This bank has been located on
the centre of chip at the same distance from all cores
acting as the last level cache between the NUCA
cache and the off-chip memory. We also assume
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Fig. 4. IPC of bank migration policy alternatives.

a huge non-affordable Last Bank of 16 MBytes to
estimate the potential benefit of this mechanism.
Figure 5 shows the IPC results for each alternative.

Generally, One Copy outperforms the Zero Copy

and Last Bank configurations. On average, One

Copy achieves 2.55 of IPC whereas Zero Copy and
Last Bank both achieve around 2.45 of IPC. The
figure also shows promising performance potential
when an unbounded Last Bank configuration is
assumed. Thus, a better exploration of an affordable
last bank approach is needed.
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Fig. 5. IPC of bank replacement policy alternatives.

V. Related Work

Kim et al. [6] introduced the concept of Non-
Uniform Cache Architecture (NUCA) and designed
several NUCA caches by partitioning the cache
into multiple banks and using a switched network
to connect these banks. Two main placement
alternatives have been proposed: Static NUCA (S-
NUCA) and Dynamic NUCA (D-NUCA). While in
S-NUCA architecture, data are statically placed in
one of the banks and always in the same bank, in
D-NUCA architecture data can be promoted to be
placed in closer and master banks. Furthermore,
two alternative bank replacement policy are also
proposed: zero-copy and one-copy.

Huh et al. [15] analyzed placement by introducing
the concept of the sharing degree in a NUCA bank.
The sharing degree is the number of cores that
share a specific bank, so a sharing degree of one
signifies a private cache. Larger sharing degrees
reduce the number of misses, thus optimizing the
cache capacity usage. Unfortunately, smaller sharing
degrees reduce hit latencies. Hardavellas et al
[16] observed that cache accesses for instructions,
shared data and private data exhibit different
characteristics. Therefore, they proposed a
mechanism (Reactive-NUCA) that applies different
migration and placement policies depending on type
of data. Finally, Hammoud et al [17] introduced a
distributed cache management scheme that monitors
the behaviour of the program and makes related
placement decisions.

Migration was considered by Beckmann and Wood
[7]. They gathered with current proposals for
managing wire delays and combined them with
CMPs. They also demonstrated that block migration
is less effective for CMP because 40-60% of hits in
commercial workloads were satisfied in the central
banks. However, to improve CMP performance,
the capability of block migration relied on a smart
search mechanism that was difficult to implement.
Kandemir et al [18],[19] proposed a migration
mechanism that tries to select the most appropriate
locations to place data shared by multiple cores.
Their proposal was based on modelling the two-
dimensional post office placement problem. Another
migration scheme was proposed by Hammoud et al
[20] to move data to banks that best minimize the
average NUCA access latency. They predicted the
optimal location of data by monitoring the behaviour
of programs.

Muralimanohar et al [21] proposed a different
approach in NUCA architectures. These authors
proposed the use of two different physical wires
to build NUCA architectures. One of these wires
provided lower latency and the other higher provided
bandwidth. They then proposed two different
bank searching algorithms [21]. A novel bank
access approach has been proposed by Akioka et
al [22]. They proposed a mechanism that predicts
the bank in which data is most likely to be located
achieving an energy compared to parallel access with
a performance similar to serial access. Ricci et al [23]
proposed a smart lookup mechanism for NUCA that
deals with Bloom filters.

Lira et al [13],[24] analyzed several replacement
alternatives and studied the characterization of those
data that are evicted and then reinserted in the
future. Furthermore, they also proposed adding an
extra bank (called Last Bank), located in the middle
of the NUCA cache at the same distance to all cores,
which collects all the evicted data. Finally, they
proposed filtering evicted data so that the Last Bank

only contains those data blocks, which are most likely
to be accessed in the near future.



VI. Conclusions and future work

We analyse how NUCA organizations perform
according to different approaches, each using the four
policies that characterize their behavior (placement,
access, migration and replacement). The Parsec
v2.0 benchmark suite has been assumed in all the
simulations. Results show us that there is still room
for improvement in all policies.

Bank placement policy analysis shows that
assuming a subset of banks for the whole cache
is more desirable, as data needs to be promoted
to closer and faster banks. However, restricting
placement to a single bank provides significant
performance results. On the other hand, believing
that data can be placed in the whole set of banks may
lead to non-affordable access and migration policies.

Parallel searches in bank access policy provide
the lowest access time but also significantly
increase energy consumption and can collapse the
interconnection network, since all banks have to be
accessed. Therefore, a more affordable mechanism
that combines parallel and serial searches is required.

NUCA organizations benefit by placing the most
frequently accessed data close to the requestor
processor. Thus, migration is a key bank policy
in terms of performance improvement as results
show significant slowdown when no migration is
assumed. On the other hand, although no important
differences have been observed between the gradual
approaches, we believe that further exploration of
this policy will introduce significant improvements.

Finally, bank replacement policy does not seem
to cause huge differences among the alternatives
analyzed except when the unbounded last bank is
considered. This result suggests that new approaches
need to be explored for replacement policy.
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